Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, present considerable challenges in their early detection, monitoring, and management. The paper presents NeuroPredict, a healthcare platform that integrates a series of Internet of Medical Things (IoMT) devices and artificial intelligence (AI) algorithms to address these challenges and proactively improve the lives of patients with or at risk of neurodegenerative diseases. Sensor data and data obtained through standardized and non-standardized forms are used to construct detailed models of monitored patients’ lifestyles and mental and physical health status. The platform offers personalized healthcare management by integrating AI-driven predictive models that detect early symptoms and track disease progression. The paper focuses on the NeuroPredict platform and the integrated emotion detection algorithm based on voice features. The rationale for integrating emotion detection is based on two fundamental observations: a) there is a strong correlation between physical and mental health, and b) frequent negative mental states affect quality of life and signal potential future health declines, necessitating timely interventions. Voice was selected as the primary signal for mood detection due to its ease of acquisition without requiring complex or dedicated hardware. Additionally, voice features have proven valuable in further mental health assessments, including the diagnosis of Alzheimer’s and Parkinson’s diseases.
Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, present considerable challenges in their early detection, monitoring, and management. The paper presents NeuroPredict, a healthcare platform that integrates a series of Internet of Medical Things (IoMT) devices and artificial intelligence (AI) algorithms to address these challenges and proactively improve the lives of patients with or at risk of neurodegenerative diseases. Sensor data and data obtained through standardized and non-standardized forms are used to construct detailed models of monitored patients’ lifestyles and mental and physical health status. The platform offers personalized healthcare management by integrating AI-driven predictive models that detect early symptoms and track disease progression. The paper focuses on the NeuroPredict platform and the integrated emotion detection algorithm based on voice features. The rationale for integrating emotion detection is based on two fundamental observations: a) there is a strong correlation between physical and mental health, and b) frequent negative mental states affect quality of life and signal potential future health declines, necessitating timely interventions. Voice was selected as the primary signal for mood detection due to its ease of acquisition without requiring complex or dedicated hardware. Additionally, voice features have proven valuable in further mental health assessments, including the diagnosis of Alzheimer’s and Parkinson’s diseases.
In the evolving healthcare landscape, recommender systems have gained significant importance due to their role in predicting and anticipating a wide range of health-related data for both patients and healthcare professionals. These systems are crucial for delivering precise information while adhering to high standards of quality, reliability, and authentication. Objectives: The primary objective of this research is to address the challenge of class imbalance in healthcare recommendation systems. This is achieved by improving the prediction and diagnostic capabilities of these systems through a novel approach that integrates linear discriminant wolf (LDW) with convolutional neural networks (CNNs), forming the LDW-CNN model. Methods: The LDW-CNN model incorporates the grey wolf optimizer with linear discriminant analysis to enhance prediction accuracy. The model’s performance is evaluated using multi-disease datasets, covering heart, liver, and kidney diseases. Established error metrics are used to compare the effectiveness of the LDW-CNN model against conventional methods, such as CNNs and multi-level support vector machines (MSVMs). Results: The proposed LDW-CNN system demonstrates remarkable accuracy, achieving a rate of 98.1%, which surpasses existing deep learning approaches. In addition, the model improves specificity to 99.18% and sensitivity to 99.008%, outperforming traditional CNN and MSVM techniques in terms of predictive performance. Conclusions: The LDW-CNN model emerges as a robust solution for multidisciplinary disease prediction and recommendation, offering superior performance in healthcare recommender systems. Its high accuracy, alongside its improved specificity and sensitivity, positions it as a valuable tool for enhancing prediction and diagnosis across multiple disease domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.