We consider the problem of indexing a collection D of D strings (documents) of total n characters from an alphabet set of size σ , such that whenever a pattern P (of p characters) and an integer τ ∈ [1, D] come as a query, we can efficiently report all (i) maximal generic words and (ii) minimal discriminating words as defined below:• maximal generic word is a maximal extension of P occurring in at least τ documents.• minimal discriminating word is a minimal extension of P occurring in at most τ documents. These problems were introduced by Kucherov et al. (SPIRE) [8], they proposed indexes occupying O (n log n) bits with query times O (p + output) and O (p + log log n + output) for Problem (i) and Problem (ii) respectively. The query time for Problem (ii) is later improved to optimal O (p + output) by Gawrychowski et al. (SPIRE) [6]. In this paper, we describe succinct indexes of n log σ + o(n log σ ) + O (n) bits space with near-optimal query times i.e., O (p + log log n + output) for both these problems. Published by Elsevier B.V.