2022
DOI: 10.3390/math10132346
|View full text |Cite
|
Sign up to set email alerts
|

Computing Frequency-Dependent Hysteresis Loops and Dynamic Energy Losses in Soft Magnetic Alloys via Artificial Neural Networks

Abstract: A neural network model to predict the dynamic hysteresis loops and the energy-loss curves (i.e., the energy versus the amplitude of the magnetic induction) of soft ferromagnetic materials at different operating frequencies is proposed herein. Firstly, an innovative Fe-Si magnetic alloy, grade 35H270, is experimentally characterized via an Epstein frame in a wide range of frequencies, from 1 Hz up to 600 Hz. Parts of the dynamic hysteresis loops obtained through the experiments are involved in the training of a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
references
References 32 publications
0
0
0
Order By: Relevance