We analyze the structure of spin-1 Bose-Einstein condensates in the presence of a homogenous magnetic field. We classify the homogenous stationary states and study their existence, bifurcations, and energy spectra. We reveal that the phase separation can occur in the ground state of polar condensates, while the spin components of the ferromagnetic condensates are always miscible and no phase separation occurs. Our theoretical model, confirmed by numerical simulations, explains that this phenomenon takes place when the energy of the lowest homogenous state is a concave function of the magnetization. In particular, we predict that phase separation can be observed in a 23 Na condensate confined in a highly elongated harmonic trap. Finally, we discuss the phenomena of dynamical instability and spin domain formation.