We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape's simplified surface-skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point has a maximally inscribed ball that touches the boundary in at least two contact points. A key observation is that the boundaries of the simplified fore-and background skeletons map one-to-one to increasingly fuzzy, soft convex, respectively concave, edges of the shape. Using this property, we build a method for segmentation of 3D shapes which has several desirable properties. Our method segments both noisy shapes and shapes with soft edges which vanish over low-curvature regions. Multiscale segmentations can be obtained by varying the simplification level of the skeleton. We present a voxel-based implementation of our approach and illustrate it on several realistic examples.