2011
DOI: 10.1007/s00182-011-0273-y
|View full text |Cite
|
Sign up to set email alerts
|

Computing solutions for matching games

Abstract: AbsztraktA párosításjáték egy kooperatív játék (N,v), amely egy G=(N,E) gráffal és w: E R + élsúlyokkal definiálható. N jelöli a játékosok halmazát és egy S N koalíció értéke megegyezik az S csúcshalmaz által feszített részgráfban található maximális párosítás súlyával. A cikkben először adunk egy O(nm+n 2 log n) idejű algoritmust, amely egy adott párosításjátékra eldönti, hogy üres-e a magja, és ha nem üres, akkor talál egy magbeli elosztást (ahol n a gráf csúcsainak számát, m pedig az élek számát jelöli). Ez… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
70
0

Year Published

2012
2012
2020
2020

Publication Types

Select...
6
1

Relationship

3
4

Authors

Journals

citations
Cited by 51 publications
(70 citation statements)
references
References 19 publications
0
70
0
Order By: Relevance
“…This problem is well known to be polynomial-time solvable (cf. [6]); recently, an O(nm+n 2 log n) time algorithm for weighted graphs on n vertices and m edges has been given [3].…”
Section: Introductionmentioning
confidence: 99%
“…This problem is well known to be polynomial-time solvable (cf. [6]); recently, an O(nm+n 2 log n) time algorithm for weighted graphs on n vertices and m edges has been given [3].…”
Section: Introductionmentioning
confidence: 99%
“…This implies that any ergodic set (which is called absorbing set in [14] and [20]) of the corresponding Markov chain must contain some of the above matchings. Constructing this instance in PRISM, we find there are 308 matchings and a single ergodic set which consists of the matchings {M 4 , M 5 , M 6 , M 7 }, where M 7 = {(1, 2), (3,8), (4,6), (5, 7)}. This corresponds to the results presented in [20].…”
Section: Analysing the Market Behavior With Automatamentioning
confidence: 63%
“…The h 1 -stable matchings are: (4,5), (6, 7)} while the h 2 -stable matchings are: (4,6), (5, 7)} Theorem 1 states that, starting from any matching, we can always reach one of these matchings by successively satisfying blocking pairs. This implies that any ergodic set (which is called absorbing set in [14] and [20]) of the corresponding Markov chain must contain some of the above matchings.…”
Section: Analysing the Market Behavior With Automatamentioning
confidence: 99%
See 2 more Smart Citations