Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose. Study the transient modes effect of movement on the track displacement for the freight train safety control is supposed in this paper. For this it is necessary to investigate the longitudinal dynamics of a train on the track displacement. Simultaneously to assess the longitudinal forces level of a track and rolling stock interaction. Methodology. The level of the longitudinal forces, effecting the track displacement, was evaluated using mathematical modeling of longitudinal vibrations of the trains at transient modes of motion caused by braking. It was considered that each train vehicle consists of a body (solid) and the wheel sets, connected with the body by friction bearings (inelastic link). It was believed that during the movement of each train vehicle the vertical plane of its symmetry coincident with the vertical plane of symmetry of the assembled rails and sleepers. At simulation it was also supposed that in the process of translational motion of the vehicle body wheels make pure rolling along the rail without slipping on it. Findings. In the results of calculations the values of the longitudinal forces at different types of braking were obtained (it is regenerative braking and pneumatic one) under quasi-static and shock transients. For this various initial state of clearances in the inter-car connections up to beginning of transient was considered. The level of dynamic additives to longitudinal forces of interaction between wheel and rail that are substantially depending on vehicle accelerations was assessed. Originality. The transient regimes effect of trains movement caused by braking on the level of the longitudinal forces of track and rolling stock interaction was investigated. The longitudinal load of freight trains with regenerative and pneumatic braking was researched. The effect of the initial state of the train and different modes of braking on a dynamic additive to the longitudinal forces of the interaction between the track and rolling stock, which may effect the displacement of assembled rails and sleepers, was estimated. Practical value. The obtained results can be used to select rational modes of braking of freight trains, especially on lengthy down grade, from the positions prevent possible track displacement. Keywords: mathematical modeling; transient modes of train movement; pneumatic braking; recuperative braking; interaction forces between the track and rolling stock
Purpose. Study the transient modes effect of movement on the track displacement for the freight train safety control is supposed in this paper. For this it is necessary to investigate the longitudinal dynamics of a train on the track displacement. Simultaneously to assess the longitudinal forces level of a track and rolling stock interaction. Methodology. The level of the longitudinal forces, effecting the track displacement, was evaluated using mathematical modeling of longitudinal vibrations of the trains at transient modes of motion caused by braking. It was considered that each train vehicle consists of a body (solid) and the wheel sets, connected with the body by friction bearings (inelastic link). It was believed that during the movement of each train vehicle the vertical plane of its symmetry coincident with the vertical plane of symmetry of the assembled rails and sleepers. At simulation it was also supposed that in the process of translational motion of the vehicle body wheels make pure rolling along the rail without slipping on it. Findings. In the results of calculations the values of the longitudinal forces at different types of braking were obtained (it is regenerative braking and pneumatic one) under quasi-static and shock transients. For this various initial state of clearances in the inter-car connections up to beginning of transient was considered. The level of dynamic additives to longitudinal forces of interaction between wheel and rail that are substantially depending on vehicle accelerations was assessed. Originality. The transient regimes effect of trains movement caused by braking on the level of the longitudinal forces of track and rolling stock interaction was investigated. The longitudinal load of freight trains with regenerative and pneumatic braking was researched. The effect of the initial state of the train and different modes of braking on a dynamic additive to the longitudinal forces of the interaction between the track and rolling stock, which may effect the displacement of assembled rails and sleepers, was estimated. Practical value. The obtained results can be used to select rational modes of braking of freight trains, especially on lengthy down grade, from the positions prevent possible track displacement. Keywords: mathematical modeling; transient modes of train movement; pneumatic braking; recuperative braking; interaction forces between the track and rolling stock
Development of a method for calculating the optimal mode of conducting a train in terms of energy saving meet the safety requirements and schedules. The method of calculation must solve the assigned tasks without significant time spent on the calculation. To implement this method of calculation was used a simplified model of the train as a controlled system. The existing mathematical and algorithmic methods for solving isoperimetric problems of finding the optimal solution in the presence of restrictions on resources were the information base for methodology development. Scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodical and normative materials, currently in force on Ukrainian Railways. The results of these studies were used to create simulators on the basis of computer technology for the training of locomotive drivers. The scientific novelty of the proposed calculation method consists in applying the simplified calculations of the status of the train as a controlled system, without the use of differential equations of motion that allows to significantly increase the speed of the calculations. This, in turn, will solve the problems of finding optimal control in real time, taking into account changing conditions during the movement of the train. The practical significance of the obtained results is the use of such a calculation method that does not require significant time for its implementation and can be used as a subsystem of the on-board train control system capable of per-forming calculations taking into account changes in the current train situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.