a b s t r a c tIn this paper, the vibration and stability of an axially moving beam is investigated. The finite element method with variable-domain elements is used to derive the equations of motion of an axially moving beam based on Rayleigh beam theory. Two kinds of axial motions including constant-speed extension deployment and back-and-forth periodical motion are considered. The vibration and stability of beams with these motions are investigated. For vibration analysis, direct time numerical integration, based on a Runge-Kutta algorithm, is used. For stability analysis of a beam with constant-speed axial extension deployment, eigenvalues of equations of motion are obtained to determine its stability, while Floquet theory is employed to investigate the stability of the beam with back-andforth periodical axial motion. The effects of oscillation amplitude and frequency of periodical axial movement on the stability of the beam are discussed from the stability chart. Time histories are established to confirm the results from Floquet theory.