Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation 2016
DOI: 10.1145/2930889.2930932
|View full text |Cite
|
Sign up to set email alerts
|

Computing the Lie Algebra of the Differential Galois Group of a Linear Differential System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
17
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 14 publications
(20 citation statements)
references
References 17 publications
0
17
0
3
Order By: Relevance
“…En m'appuyant sur l'analyse de l'oeuvre scientifique de Paul Painlevé par Jacques Hadamard 5 [57] (cf. aussi [94]) je vais décrire l'état de la recherche sur les équations différentielles vers 1880 et la découverte par P. Painlevé des équations qui portent son nom 6 .…”
Section: La Naissance Des éQuations De Painlevé Leur Redécouverte à Strasbourg Vers 1970 Et Les Débuts De La Collaboration Franco-japonaiunclassified
“…En m'appuyant sur l'analyse de l'oeuvre scientifique de Paul Painlevé par Jacques Hadamard 5 [57] (cf. aussi [94]) je vais décrire l'état de la recherche sur les équations différentielles vers 1880 et la découverte par P. Painlevé des équations qui portent son nom 6 .…”
Section: La Naissance Des éQuations De Painlevé Leur Redécouverte à Strasbourg Vers 1970 Et Les Débuts De La Collaboration Franco-japonaiunclassified
“…The spirit of this result and of our proof appears in the proof of [3,Theorem 3] in a particular case. It is extended here to all constructions and this is useful for reduced form algorithms; see [4,Lemma 5.1], where this result was alluded to, without a full proof for lack of space. Theorem 3.9.…”
Section: Gauge Transformation To a Reduced Form With Local Conditionsmentioning
confidence: 99%
“…The algorithm in [4]. In the latter reference, we showed how one can compute the Galois-Lie algebra of an (absolutely) irreducible linear differential system and hence (a good part of) its differential Galois group.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Under the assumptions of the theorem, this type of solvability is equivalent to solvability by exponentials of integrals.2 Under the assumptions of the theorem, this type of solvability is equivalent to solvability by integrals and radicals 3. Under the assumptions of the theorem, this type of solvability is equivalent to solvability by radicals.…”
mentioning
confidence: 99%