“…Brought to you by | University of Iowa Libraries Authenticated Download Date | 6/13/15 3:49 PM and 6 odd functions: α ΐ5 α 2 , α 6 , α 7 , α 8 , α 9 . Note that, if α = J({(x i ,y i ),(x 2 >y2)})> negation: -a = /({(x l5 -yj, (λ: 2 , -y 2 )}), leaves the 10 even functions unchanged and negates the 6 odd functions, so that -a = (a 0 , -a l5 -a 2 , a 3 , 0 4 , 5 , -0 6 , -a 7 , -a 8 , -a 9 , a 10 , 0 U , a 12 , a 13 , a 14 , Of the 10 even functions, there are 4 functions: α 5 , α 13 , 0 14 , α 15 which give a basis for J5f ((Θ + + Θ~)).…”