Abstract:Most high-dimensional datasets are thought to be inherently low-dimensional, that is, datapoints are constrained to lie on a low-dimensional manifold embedded in a high-dimensional ambient space. Here we study the viability of two approaches from differential geometry to estimate the Riemannian curvature of these low-dimensional manifolds. The intrinsic approach relates curvature to the Laplace-Beltrami operator using the heat-trace expansion, and is agnostic to how a manifold is embedded in a high-dimensional… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.