2010
DOI: 10.1080/18756891.2010.9727709
|View full text |Cite
|
Sign up to set email alerts
|

Computing with Words in Decision support Systems: An overview on Models and Applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
102
0
1

Year Published

2013
2013
2017
2017

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 238 publications
(103 citation statements)
references
References 101 publications
0
102
0
1
Order By: Relevance
“…The output is "Social risk" and the inputs are "Seismic hazard", "Population density", "Socioeconomical status", "floods", and "Extreme temperatures". The credibility rules in the risk assessment are defined as follow: r 1 h_3, L_1)). …”
Section: Case Studymentioning
confidence: 99%
See 1 more Smart Citation
“…The output is "Social risk" and the inputs are "Seismic hazard", "Population density", "Socioeconomical status", "floods", and "Extreme temperatures". The credibility rules in the risk assessment are defined as follow: r 1 h_3, L_1)). …”
Section: Case Studymentioning
confidence: 99%
“…In most of cases, people use linguistic terms in natural language to express their opinions and make reasoning and judgments. [1][2][3] Many approaches have been presented for representation and reasoning of uncertain knowledge in the last decade. [4][5][6][7] Among various computational approaches in the literature, numerical quantification of linguistic values into a fuzzy set using fuzzy membership functions has played the key role.…”
Section: Introductionmentioning
confidence: 99%
“…The conventional fuzzy set based method [8,[24][25][26][27] uses membership function or fuzzy number to represent linguistic information and need a linguistic approximation of the final computed result, which are time consuming and computationally complex [28]. Symbolic approaches [29][30][31] use symbols (usually in a structure) to represent linguistic information directly without the numerical approximation, and aggregate or reason about these symbols to obtain the final result.…”
Section: Representation Of Ordinal Qualitative Informationmentioning
confidence: 99%
“…One of the representative linguistic valued information processing approaches is fuzzy ordinal linguistic approach [29][30][31][32]. This method uses an ordered structure, linguistic labels with indexes, to represent the set of linguistic terms, with the assumption that the terms under discussion is totally ordered [33].…”
Section: Representation Of Ordinal Qualitative Informationmentioning
confidence: 99%
“…Taip pat buvo ištobulinti techninės analizės modeliai, kurie įtraukia ekspertų vertinimo sistemas ir kitas informacijos apdorojimo formas (CervellóRoyo et al 2015). Sprendimų paramos sistemos pripažintos kaip naudingos priemonės, padedančios jų naudotojams planuoti ir priimti sprendimus, be to, gali būti taikomos skirtingose srityse (Klein, Methlie 2009;Martinez et al 2009;Stasytytė 2011Stasytytė , 2012. Realiose situacijose sprendimų paramos sistema paprastai interpretuojama kaip kompiuterinė informacinė sistema, skirta sprendimų priėmimo informacijai generuoti ir padedanti vartotojui spręsti problemą (Stasytytė 2011(Stasytytė , 2012.…”
unclassified