Abstract-This paper studies the max-min weighted signal-to-interference-plus-noise ratio (SINR) problem in the multipleinput-multiple-output (MIMO) downlink, where multiple users are weighted according to priority and are subject to a weighted-sum-power constraint. First, we study the multiple-input-single-output (MISO) and single-input-multipleoutput (SIMO) problems using nonlinear Perron-Frobenius theory. As a by-product, we solve the open problem of convergence for a previously proposed MISO algorithm by Wiesel, Eldar, and Shamai in 2006. Furthermore, we unify our analysis with respect to the previous alternate optimization algorithm proposed by Tan, Chiang, and Srikant in 2009, by showing that our MISO result can, in fact, be derived from their algorithm. Next, we combine our MISO and SIMO results into an algorithm for the MIMO problem. We show that our proposed algorithm is optimal when the channels are rank-one, or when the network is operating in the low signal-to-noise ratio (SNR) region. Finally, we prove the parametric continuity of the MIMO problem in the power constraint, and we use this insight to propose a heuristic initialization strategy for improving the performance of our (generally) suboptimal MIMO algorithm. The proposed initialization strategy exhibits improved performance over random initialization.Index Terms-Beamforming, multiple-input-multiple-output (MIMO), uplink-downlink duality.