A water soluble, phenanthroline-strapped zinc porphyrin bearing four arylsulfonate groups formed a stable host-guest complex with two per-O-methylated b-cyclodextrin cavities. In the host-guest assembly, the zinc porphyrin was capable of binding imidazole within the cavity between the zinc(II) ion and the phenanthroline strap in an aqueous medium. The formation of a hydrogen bond between the imidazole NH and the nitrogen atoms of the phenanthroline was an essential element of the binding event, as shown by comparative binding studies with a non-strapped tetrasulfonated zinc porphyrin and with N-methylimidazole. This hydrogen bonding in an aqueous medium was possible due to the protected hydrophobic environment created by the cyclodextrins around the phenanthroline strap. This type of binding event may provide a biomimetic approach to study water soluble hemeprotein models.