I.Vekua constructed hierarchical models for elastic prismatic shells, in particular, plates of variable thickness, when on the face surfaces either stresses or displacements are known. In the present paper other hierarchical models for cusped, in general, elastic isotropic and anisotropic prismatic shells are constructed and analyzed, namely, when on the face surfaces (i) a normal to the projection of the prismatic shell component of a stress vector and parallel to the projection of the prismatic shell components of a displacement vector, (ii) a normal to the projection of the prismatic shell component of the displacement vector and parallel to the projection of the prismatic shell components of the stress vector are prescribed. We construct also hierarchical models, when other mixed conditions are given on face surfaces. In the zero approximations of the models under consideration peculiarities (depending on sharpening geometry of the cusped edge) of correct setting boundary conditions at edges are investigated. In concrete cases some boundary value problems are solved in an explicit form. As an example of application of the constructed Vekua-type models to composite structures, as example, an unidirectional lamina with fibers parallel to x 2 -axis under shear strain is considered. Tension-compression is treated as well.