Abstract. The westerly wind travelling at high altitudes over East Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range transported aerosols include not only mineral particles, but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we 20 used the aerosol particles captured in the snow cover at the altitudes of 2,450 m on Mt. Tateyama to investigate the sequential changes of ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt. Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), North 25 Asia, and the Sea of Japan, while those in the upper parts showed an increase the Asian-dust particles, which originate from the desert regions and industrial coasts of Asian. The snow samples exhibited high levels of ice nucleation corresponding to the increase of Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter; whereas, during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla 30 Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship to the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt.Tateyama and carry terrestrial bacterial populations, which possibly induce ice-nucleation activities, thereby indirectly effecting on climate changes.Atmos. Chem. Phys. Discuss., https://doi