The net-shape and loading analysis system (NaLA) was developed to determine fishing net configuration and load in a previous study. The system has since been applied to general gill nets and aquaculture nets, and its validity has been proven through model experiments in tanks. In this study, the system was applied to estimate the dynamic behavior of a bottom gill net for walleye pollock, to test the system's applicability of the system to gear operations in the field. To obtain in situ data, four bottom gill net operations were performed in February 2004 off the coast of Sawara, Hokkaido, Japan. During operations, vertical displacements of the bottom gill net's float and sinker lines were measured as representative values of gear behavior, and ocean current direction, and speed at the gear position were observed simultaneously. Then, bottom gill net behavior was simulated using NaLA, incorporating observed environmental conditions and gear specifications. The resulting calculated behavior was compared to measured behavior in terms of the relationship between net height and environmental or setting conditions. Agreement between the calculated and measured net behavior was found. Thus, it is believe that our NaLA calculation model has the potential to simulate the dynamic behavior of bottom gill nets in situ.