The use of information modeling tools at all stages of the life cycle of a capital construction object allows you to analyze design information in order to make the most correct decision, while significantly reducing the uncertainty of processes by increasing the amount of data available for analysis. One of the labor-intensive processes at the design stage is the selection of the most suitable structural elements, including translucent structures. As part of the work, the normative and reference information related to the calculation of the heat-shielding characteristics of building structures has been analyzed, scientific developments and publications devoted to the automation of the implementation of heat engineering calculations using various software tools are considered. For the purpose of the study, two indicators were calculated: the normalized value of the reduced heat transfer resistance and the reduced heat transfer resistance of the window. To solve the problem, such automation tools as the Dynamo visual programming tool and the Python programming language were used, with the help of which a script was developed for calculating the thermal performance of windows for use in Autodesk Revit (Autodesk, Inc., USA). As part of the study, it was determined that the combined use of the Dynamo visual programming tool and the Python text programming tool, expanding the functionality of Autodesk Revit, made it possible to automate the task of calculating the reduced heat transfer resistance of a window and the normalized heat transfer resistance, taking into account conditions of a specific construction region.