Motivation: First-line data quality assessment and exploratory data analysis are integral parts of any data analysis workflow. In high-throughput quantitative omics experiments (e.g. transcriptomics, proteomics, metabolomics), after initial processing, the data are typically presented as a matrix of numbers (feature IDs x samples). Efficient and standardized data-quality metrics calculation and visualization are key to track the within-experiment quality of these rectangular data types and to guarantee for high-quality data sets and subsequent biological question-driven inference.
Results: We present MatrixQCvis, which provides interactive visualization of data quality metrics at the per-sample and per-feature level using R's shiny framework. It provides efficient and standardized ways to analyze data quality of quantitative omics data types that come in a matrix-like format (features IDs x samples). MatrixQCvis builds upon the Bioconductor SummarizedExperiment S4 class and thus facilitates the integration into existing workflows.
Availability: MatrixQCVis is implemented in R. It is available via Bioconductor and released under the GPL v3.0 license.