Sea-level rise (SLR) is a major concern for coastal hazards such as flooding and erosion in the decades to come. Lately, the value of high-end sea-level scenarios (HESs) to inform stakeholders with low-uncertainty tolerance has been increasingly recognized. Here, we provide high-end projections of SLR-induced sandy shoreline retreats for Europe by the end of the 21st century based on the conservative Bruun rule. Our HESs rely on the upper bound of the RCP8.5 scenario "likely-range" and on high-end estimates of the different components of sea-level projections provided in recent literature. For both HESs, SLR is projected to be higher than 1 m by 2100 for most European coasts. For the strongest HES, the maximum coastal sea-level change of 1.9 m is projected in the North Sea and Mediterranean areas. This translates into a median pan-European coastline retreat of 140 m for the moderate HES and into more than 200 m for the strongest HES. The magnitude and regional distribution of SLR-induced shoreline change projections, however, utterly depend on the local nearshore slope characteristics and the regional distribution of sea-level changes. For some countries, especially in Northern Europe, the impacts of high-end sea-level scenarios are disproportionally high compared to those of likely scenarios.2 of 22 gas emissions. Since the release of the IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report) in 2013, the debate on long-term projections of GMSL has strongly focused on the potentially very large contribution of the Antarctica ice-sheet [2,[8][9][10][11], which constitutes a deep source of uncertainty.Sea-level changes at the regional scale can substantially differ from GMSL change. Thermal expansion is modulated regionally by changes in ocean circulation, density, and atmospheric pressure [12,13]. In addition, water mass transfer from land to the ocean-due, e.g., to mountain glaciers and ice-sheets melting or groundwater extraction-induces regional changes by altering the Earth's gravity field, Earth rotation, and solid-Earth deformation [14]. Ongoing changes in the solid Earth are also still caused by the viscous adjustment of the mantle to the important mass redistribution that followed the Last Glacial Maximum (named Glacial Isostatic Adjustment; GIA) [15]. At the European scale, the influence of GIA is particularly prominent in the Scandinavian area. Finally, at a local scale, high-resolution oceanic processes [16] and vertical ground motion [17,18] can affect further the relative sea-level.Projections of future regional sea-level are crucial to support adaptation planning. So far, coastal adaptation practitioners have often relied on IPCC sea-level projections, which are provided in the form of a likely range (probability larger than 66%), and do not reflect the whole range of uncertainties of sea-level projections [19][20][21][22][23]. However, as coastal climate services are being developed [24,25], it is increasingly recognized that different types of sea-level projections are requir...