The global landscape in the supply, creation and use of geospatial data is changing very rapidly with new satellites, sensors and mobile devices reconfiguring the traditional lines of demand and supply, and the number of actors involved. As the volume, heterogeneity and rapidity of change of the data increases many organisations worldwide are reflecting on how to manage and exploit Big Data. The opportunities are many for business, science and policy but so are the challenges at technical, methodological, organisational, legal and ethical levels. In this chapter, we situate the discussion of Big Data in the context of the increasing challenges of the scientific method in a world of contested politics, in which science can no longer be seen as "neutral". We argue for a more open and participative science starting from the shared framing of problems across multiple stakeholders. In this context, the reproducibility of science is not just about the ability to repeat an experiment but also about the transparency of the process leading to a shared outcome. Opening up science to make it truly participative will need a major paradigm shift. It also needs an underpinning information infrastructure geared towards sharing data, information and knowledge across multidisciplinary and transdisciplinary boundaries. We use the development of the Global Earth Observation System of System (GEOSS) as a case study, because it highlights well the nature of these challenges when handling multidisciplinary Big Data across more than 80 countries and 90 international organisations. As we show, there is an increasing gap between the rapidity of technological progress and the slow pace of the organisational and M. Craglia ( )