Garcinia gummi-gutta, commonly known as Garcinia cambogia (syn.), is a popular traditional herbal medicine known for its role in treating obesity, and has been incorporated into several nutraceuticals globally for this purpose. The fruit rind is also used as a food preservative and a condiment because of its high content of hydroxycitric acid, which imparts a sharp, sour flavour. This review highlights the major bioactive compounds present in the tree Garcinia gummi-gutta, with particular emphasis on (2S, 3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furan dicarboxylic acid, commonly referred to as garcinia acid. This acid can be isolated in large amounts through a simple procedure. Additionally, it explores the synthetic transformations of garcinia acid into biologically potent and functionally useful enantiopure compounds, a relatively under-documented area in the literature. This acid, with its six-carbon skeleton, a γ-butyrolactone moiety, and two chiral centres bearing chemically amenable functional groups, offers a versatile framework as a chiron for the construction of diverse molecules of both natural and synthetic origin. The synthesis of chiral 3-substituted and 3,4-disubstituted pyrrolidine-2,5-diones, analogues of the Quararibea metabolite—a chiral enolic-γ-lactone; the concave bislactone skeletons of fungal metabolites (+)-avenaciolide and (−)-canadensolide; the structural skeletons of the furo[2,3-b]furanol part of the anti-HIV drug Darunavir; (−)-tetrahydropyrrolo[2,1-a]isoquinolinones, an analogue of (−)-crispine A; (−)-hexahydroindolizino[8,7-b]indolones, an analogue of the naturally occurring (−)-harmicine; and furo[2,3-b]pyrroles are presented here.