2012
DOI: 10.1007/978-3-642-33636-2_11
|View full text |Cite
|
Sign up to set email alerts
|

Concretizing the Process Hitting into Biological Regulatory Networks

Abstract: Abstract. The Process Hitting (PH) is a recently introduced framework to model concurrent processes. Its major originality lies in a specific restriction on the causality of actions, which makes the formal analysis of very large systems tractable. PH is suitable to model Biological Regulatory Networks (BRNs) with complete or partial knowledge of cooperations between regulators by defining the most permissive dynamics with respect to these constraints.On the other hand, the qualitative modeling of BRNs has been… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2013
2013
2019
2019

Publication Types

Select...
4
2
1

Relationship

4
3

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 17 publications
0
7
0
1
Order By: Relevance
“…The contributions presented in this paper significantly extend and improve the preliminary results introduced in [25]. In addition to the improvement of the efficiency and accuracy of the IG inference, we have added support for non-monotonous regulations, that are regulations being positive or negative depending on a particular context.…”
Section: Introductionmentioning
confidence: 61%
“…The contributions presented in this paper significantly extend and improve the preliminary results introduced in [25]. In addition to the improvement of the efficiency and accuracy of the IG inference, we have added support for non-monotonous regulations, that are regulations being positive or negative depending on a particular context.…”
Section: Introductionmentioning
confidence: 61%
“…L'aspect indéterministe des réseaux étudiés dans cet article, outre leur généralisation des réseaux d'automates classiques où la dynamique locale des composants est déterministe, apporte un outil pratique pour la modélisation des réseaux biologiques avec une connaissance partielle sur les fonctions d'évolution. En effet, comme détaillé dans Paulevé, 2011 ;Folschette et al, 2012), étant donné un graphe d'influence, et sous l'hypothèse de monotonie des fonctions d'évolution de chaque composant, il est possible de construire de manière compacte un réseau d'automates indéterministe dont la dynamique est l'union des transitions de tous les réseaux discrets compatibles avec le graphe d'influence. Il est également possible de construire des réseaux d'automates incluant la dynamique d'un certain ensemble de réseaux discrets soumis à certaines contraintes sur les fonctions d'évolution.…”
Section: Resultsunclassified
“…The formal relationship between Boolean networks and process hitting can be found in [28]. At this point, we would like to investigate the model to see if it adequately reflects our biological understanding of the system as a whole: are experimentally demonstrated states reachable; are impossible states unreachable; and are there fixed points if steady-state behaviors exist?…”
Section: Modelmentioning
confidence: 99%