BackgroundTranscranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) is a novel method for assessing cortical properties outside the motor region. Theta burst stimulation (TBS), a form of repetitive TMS, can non-invasively modulate cortical excitability and has been increasingly used to treat psychiatric disorders by targetting the dorsolateral prefrontal cortex (DLPFC). The TMS-evoked potentials (TEPs) analysis has been used to evaluate cortical excitability changes after TBS. However, it remains unclear whether TEPs can detect the neuromodulatory effects of TBS.ObjectivesTo confirm the reliability of TEP components within and between sessions and to measure changes in neural excitability induced by intermittent (iTBS) and continuous TBS (cTBS) applied to the left DLPFC.MethodsTest-retest reliability of TEPs and TBS-induced changes in cortical excitability were assessed in twenty-four healthy participants by stimulating the DLPFC in five separate sessions, once with sham and twice with iTBS and cTBS. EEG responses were recorded of 100 single TMS pulses before and after TBS, and the reproducibility measures were quantified with the concordance correlation coefficient (CCC).ResultsThe N100 and P200 components presented substantial reliability within the baseline block (CCCs>0.8) and moderate concordance between sessions (CCCmax≈0.7). Both N40 and P60 TEP amplitudes showed little concordance between sessions. Changes in TEP amplitudes after iTBS were marginally reliable for N100 (CCCmax=0.52), P200 (CCCmax=0.47) and P60 (CCCmax=0.40), presenting only fair levels of concordance at specific time points.ConclusionsThe present findings show that only the N100 and P200 components had good concordance between sessions. The reliability of earlier components may have been affected by TMS-evoked artefacts. The poor reliability to detect changes in neural excitability induced by TBS indicates that TEPs do not provide a precise estimate of the changes in excitability in the DLPFC or, alternatively, that TBS did not induce consistent changes in neural excitability.