Enhanced vapor condensation is a critical issue for improving the efficiency of energy conversion, thermal management, water recovery, and treatment. Low-energy surfaces incorporating micro/nanoscale roughness have been reported to significantly promote vapor condensation. In this research, the mesh structures of super-aligned carbon nanotube (SACNT) films were prepared by crossing monolayer SACNT films on a copper substrate. Then, the sustaining dropwise condensation was achieved on the SACNT mesh-coated surface. The SACNT mesh-coated surface could obviously enhance the coalescence and sweeping departure of the condensing droplets. Additionally, the measured overall heat transfer coefficient (HTC) of the SACNT meshcoated surface demonstrated a 36% enhancement compared to that on the bare copper surface. The parallel stacking of SACNT films with different groove structures was also studied, and a 15% enhancement in the HTC was shown as compared with the bare copper surface. Furthermore, we developed a morphology-based model to theoretically analyze the condensation-enhancement mechanism on a SACNT mesh-coated surface. The SACNT surfaces also have advantages of low cost, durability, flexibility, and extensibility. Our findings revealed that the SACNT films could be readily used as vapor condensation-strengthening surfaces, further extending their potential applications to industrial equipment.