Upon collision-induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2- 1,3-, and 1,4-benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO(2) by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem-in-space mass spectrometer, and subjected to collision-induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO(2) loss to produce a peak at m/z 145 for a sodiated arene of formula (Na(3)C(6)H(4))(+). This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(*C(6)H(4)CO(2)Na(2))(+)], which then eliminated CO(2) to produce a peak at m/z 122 for the distonic cation (*C(6)H(4)Na(2))(+).