2010
DOI: 10.1590/s0103-17592010000100008
|View full text |Cite
|
Sign up to set email alerts
|

Condiçoes LMIs alternativas para sistemas Takagi-Sugeno via função de Lyapunov Fuzzy

Abstract: Este trabalho versa sobre análise de estabilidade e projeto de controladores para sistemas fuzzy Takagi-Sugeno (TS) contínuos no contexto de desigualdades matriciais lineares (LMIs). Aplicando uma estratégia de relaxaçao a um tipo de funçao de Lyapunov fuzzy proposta recentemente, é possível obter novas condições de estabilidade descritas por LMIs. Essas novas condições conferem novos graus de liberdade ao problema LMI, reduzindo o conservadorismo. Mais do que isso, tal estratégia permite a síntese de controla… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2012
2012
2013
2013

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 27 publications
0
2
0
Order By: Relevance
“…The modeling, analysis and control of nonlinear systems via linear models are not restricted to approaches based on LDIs. In this sense, Mamdani and Takagi Sugeno fuzzy systems play also an important role (Montagner et al, 2010;Mozelli et al, 2010;Tognetti and Oliveira, 2010). These type of fuzzy systems allow nonlinear systems to be approximated by means of an averaged sum of linear models.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The modeling, analysis and control of nonlinear systems via linear models are not restricted to approaches based on LDIs. In this sense, Mamdani and Takagi Sugeno fuzzy systems play also an important role (Montagner et al, 2010;Mozelli et al, 2010;Tognetti and Oliveira, 2010). These type of fuzzy systems allow nonlinear systems to be approximated by means of an averaged sum of linear models.…”
Section: Introductionmentioning
confidence: 99%
“…These type of fuzzy systems allow nonlinear systems to be approximated by means of an averaged sum of linear models. Then, the problems of analysis and synthesis can be written in terms of LMIs (Montagner et al, 2010;Mozelli et al, 2010). Also, based on feedback linearization technique, adaptative neural networks or fuzzy control schemes have been introduced to approximate nonlinear systems into linear models (Chen et al, 1996).…”
Section: Introductionmentioning
confidence: 99%