INTRODUCTION Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy [1, 2]. Three types of gene mutations are thought to play major roles in the pathogenesis of classical AML. Types I and II mutations are related to cellular proliferation and differentiation, while type III mutations affect genes encoding epigenetic factors involved in the pathogenesis and progression of AML [3]. Adenylyl cyclases (ADCYs) have been attracting increased attention in recent years [4]. These enzymes, which catalyze the generation of cAMP from ATP [5, 6], differ in their responses to upstream regulatory pathways and their distribution, and play essential roles in learning, synaptic plasticity, cardiovascular responses and tumorigenesis [7-10]. The nine members of the ADCY family (ADCY1-ADCY9) exhibit distinct responses to G protein coupled receptors and have been grouped into three subgroups based on their functional activities and sequence homology. Group 1 consists of ADCY1, ADCY3 and ADCY8, which are mainly distributed in neuronal tissues and stimulated by Ca +2 /calmodulin [10]. Group 2 contain ADCY2, ADCY4 and ADCY7, which are Ca +2-independent and are stimulated by G proteins [11]. Group 3 includes ADCY5 and ADCY6, which are mainly expressed in www.aging-us.com