1989
DOI: 10.1007/bf00869346
|View full text |Cite
|
Sign up to set email alerts
|

Conditionals and theory change: Revisions, expansions, and additions

Abstract: ABSTRACT. This paper dwells upon formal models of changes of beliefs, or theories, which are expressed in languages containing a binary conditional connective. After defining the basic concept of a (non-trivial) belief revision model. I present a simple proof of G~irdenfors's (1986) triviality theorem. I claim that on a proper understanding of this theorem we must give up the thesis that consistent revisions ('additions') are to be equated with logical expansions. If negated or 'might' conditionals are interp… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
41
0
1

Year Published

1994
1994
2016
2016

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 61 publications
(44 citation statements)
references
References 11 publications
2
41
0
1
Order By: Relevance
“…Rott [37] argues convincingly that (M ) is indeed true, but only trivially so. Infor-mally, once we admit conditionals into belief sets (as per (A K 2)), no belief set can be a proper subset of another.…”
Section: Loopholesmentioning
confidence: 99%
See 4 more Smart Citations
“…Rott [37] argues convincingly that (M ) is indeed true, but only trivially so. Infor-mally, once we admit conditionals into belief sets (as per (A K 2)), no belief set can be a proper subset of another.…”
Section: Loopholesmentioning
confidence: 99%
“…In addition, even with closure, success, and consistency reinstated, we will show below that the system avoids the result on several grounds. Notably, it encapsulates variants of the solutions proposed in [37,14,28]. In addition, the triviality trap is also avoided as a result of adopting relevance logic and only one direction of the Ramsey test.…”
Section: The Trap Reenteredmentioning
confidence: 99%
See 3 more Smart Citations