Let X " pX t , t ě 0q be a self-similar Markov process taking values in R such that the state 0 is a trap. In this paper, we present a necessary and sufficient condition for the existence of a self-similar recurrent extension of X that leaves 0 continuously. The condition is expressed in terms of the associated Markov additive process via the Lamperti-Kiu representation. Our results extend those of Fitzsimmons [9] and Rivero ([19], [20]) where the existence and uniqueness of a recurrent extension for positive self similar Markov processes were treated. In particular, we describe the recurrent extension of a stable Lévy process which to the best of our knowledge has not been studied before.