Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The cholesterol-fed rabbit is a model of atherosclerosis and has been proposed as an animal model of Alzheimer's disease. Feeding rabbits cholesterol has been shown to increase the number of beta amyloid immunoreactive neurons in the cortex. Addition of copper to the drinking water of cholesterol-fed rabbits can increase this number still further and may lead to plaque-like structures. Classical conditioning of the nictitating membrane response in cholesterol-fed rabbits is retarded in the presence of these plaque-like structures but may be facilitated in their absence. In a factorial design, rabbits fed 2% cholesterol or a normal diet (0% cholesterol) for 8 weeks with or without copper added to the drinking water were given trace classical conditioning using a tone and periorbital electrodermal stimulation to study the effects of cholesterol and copper on classical conditioning of heart rate and the nictitating membrane response. Cholesterol-fed rabbits showed significant facilitation of heart rate conditioning and conditioning-specific modification of heart rate relative to normal diet controls. Consistent with previous research, cholesterol had minimal effects on classical conditioning of the nictitating membrane response when periorbital electrodermal stimulation was used as the unconditioned stimulus. Immunohistochemical analysis showed a significant increase in the number of beta amyloid positive neurons in the cortex, hippocampus and amygdala of the cholesterol-fed rabbits. Supplementation of drinking water with copper increased the number of beta amyloid positive neurons in the cortex of cholesterol-fed rabbits but did not produce plaque-like structures or have a significant effect on heart rate conditioning. The data provide additional support for our finding that, in the absence of plaques, dietary cholesterol may facilitate learning and memory. Cholesterol enhances rabbit heart rate conditioningThe cholesterol-fed rabbit has been used as an animal model of atherosclerosis since 1913 when Anitchkow first demonstrated that a cholesterol diet induced vascular lesions (Bocan, 1998;Fan & Watanabe, 2000;Finking & Hanke, 1997;Moghadasian, 2002). More recently, the cholesterol-fed rabbit has been proposed as an animal model of Alzheimer's disease (Ghribi, Larsen, Schrag, & Herman, 2006;Sjogren, Mielke, Gustafson, Zandi, & Skoog, 2006 Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Sparks, 1997;Sparks, Martin, Gross, & Hunsaker III, 2000;Zatta, Zambenedetti, Stella, & Licastro, 2002). Based on the observation that patients with heart disease had beta amyloid st...
The cholesterol-fed rabbit is a model of atherosclerosis and has been proposed as an animal model of Alzheimer's disease. Feeding rabbits cholesterol has been shown to increase the number of beta amyloid immunoreactive neurons in the cortex. Addition of copper to the drinking water of cholesterol-fed rabbits can increase this number still further and may lead to plaque-like structures. Classical conditioning of the nictitating membrane response in cholesterol-fed rabbits is retarded in the presence of these plaque-like structures but may be facilitated in their absence. In a factorial design, rabbits fed 2% cholesterol or a normal diet (0% cholesterol) for 8 weeks with or without copper added to the drinking water were given trace classical conditioning using a tone and periorbital electrodermal stimulation to study the effects of cholesterol and copper on classical conditioning of heart rate and the nictitating membrane response. Cholesterol-fed rabbits showed significant facilitation of heart rate conditioning and conditioning-specific modification of heart rate relative to normal diet controls. Consistent with previous research, cholesterol had minimal effects on classical conditioning of the nictitating membrane response when periorbital electrodermal stimulation was used as the unconditioned stimulus. Immunohistochemical analysis showed a significant increase in the number of beta amyloid positive neurons in the cortex, hippocampus and amygdala of the cholesterol-fed rabbits. Supplementation of drinking water with copper increased the number of beta amyloid positive neurons in the cortex of cholesterol-fed rabbits but did not produce plaque-like structures or have a significant effect on heart rate conditioning. The data provide additional support for our finding that, in the absence of plaques, dietary cholesterol may facilitate learning and memory. Cholesterol enhances rabbit heart rate conditioningThe cholesterol-fed rabbit has been used as an animal model of atherosclerosis since 1913 when Anitchkow first demonstrated that a cholesterol diet induced vascular lesions (Bocan, 1998;Fan & Watanabe, 2000;Finking & Hanke, 1997;Moghadasian, 2002). More recently, the cholesterol-fed rabbit has been proposed as an animal model of Alzheimer's disease (Ghribi, Larsen, Schrag, & Herman, 2006;Sjogren, Mielke, Gustafson, Zandi, & Skoog, 2006 Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Sparks, 1997;Sparks, Martin, Gross, & Hunsaker III, 2000;Zatta, Zambenedetti, Stella, & Licastro, 2002). Based on the observation that patients with heart disease had beta amyloid st...
Understanding the mechanisms of fear extinction has become increasingly important for treating a number of disorders, particularly post-traumatic stress disorder. Conditioning of rabbit heart rate (HR) is an established model for studying fear, yet little is known about procedures for extinguishing it other than repeated presentations of cue(s) associated with the fear-inducing event. The following study examined the effects of conditioned stimulus (CS) alone, unconditioned stimulus (US) alone, unpaired CS/US presentations, continued CS-US pairings, or no further stimulation on rabbit HR following HR conditioning. We have previously shown the rabbit HR response to the US can change as a function of learning when measured in the absence of the CS, a phenomenon referred to as conditioning-specific reflex modification (CRM). More specifically, the HR exhibits a deceleration in response to the US reminiscent of the conditioned bradycardia that develops to the CS. Consequently, the following study also examined the effects of extinction treatments on HR CRM. For HR conditioned responses (CRs), CS-alone and unpaired CS/US presentations were the most successful extinction treatments. For HR CRM, all conditions led to a reduction in CRM except for a subset of rabbits that maintained high levels following unpaired extinction, indicating a dissociation between extinction of HR CRs and CRM. The findings highlight the parameters of HR extinction, the transient nature of HR CRM, vagal involvement in both acquisition and extinction of HR CRM, and suggest that HR CRM cannot be fully explained as a CR that has generalized from the CS to the US.
Binge-like exposure to ethanol early in development results in neurotoxic impairments throughout the brain, including the cerebellum and brainstem. Rats exposed to ethanol, during a period of time commensurate with the human third trimester, also show deficits in classical eyeblink conditioning (EBC), a cerebellar-dependent associative learning procedure. The relationship between ethanolmediated EBC deficits and the intensity of the unconditioned stimulus (US) was explored in the current study. Neonatal rats were intubated and infused with ethanol (EtOH rats), sham-intubated and given no ethanol (SI rats), or reared as unhandled controls (UC rats). As adults, all rats underwent 10 days of 350 ms delay eyeblink conditioning with a tone conditioned stimulus (CS) and one of three co-terminating periorbital shock US. The frequency and topography of the conditioned eyeblink response (CR) were impaired in EtOH rats relative to UC rats. EtOH rats produced fewer CRs, with longer onset latencies, at all US intensities. In contrast, CR amplitude was impaired in EtOH rats at the highest US intensity only. Following conditioning, the unconditioned eyeblink response (UR) was analyzed in subsets of rats from each treatment group at five US intensities. Early ethanol exposure did not impair UR peak amplitude. The deficits in CR production are proposed to result from ethanol-mediated damage within specific regions of the EBC neural circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.