Quasi-velocities computed with the kinetic metric of a Lagrangian system are introduced, and the quasi-Lagrange equations are derived with and without friction. This is shown to be very well suited to systems subject to unilateral constraints (hence varying topology) and impacts. Energetical consistency of a generalized kinematic impact law is carefully studied, both in the frictionless and the frictional cases. Some results concerning the existence and uniqueness of solutions to the so-called contact linear complementarity problem, when friction is present, are provided.