High-performance cross-linked polyethylene (XLPE) is currently employed in ultra-high-voltage direct current (UHVDC) cables, with the electrical tree being an important cause of DC cable breakdown. The comparison of XLPE samples under different manufacturing processes can provide a reference for the progress of cable production processes. This paper compares laboratory-prepared XLPE samples (DC-XLPE) with XLPE samples extracted from actual cables (Cable-XLPE) through electrical tree experiments, X-ray diffraction (XRD), and gel permeation chromatography (GPC). The experimental findings indicate that the breakdown time of DC-XLPE increased by nearly 50% compared to Cable-XLPE, with slower electrical tree growth and lower average discharge magnitude observed. Overall, DC-XLPE exhibited superior resistance to DC electrical tree and partial discharge. XRD and GPC analyses revealed minimal differences in crystallinity and grain size between the two types, with the primary distinction being DC-XLPE’s notably higher molecular weight and more concentrated molecular weight distribution. The differences in physicochemical properties may be attributed to more precise and uniform temperature control during the crosslinking process in laboratory settings, as well as a higher removal rate of crosslinking byproducts, ultimately leading to enhanced resistance to electrical tree and partial discharge in DC-XLPE.