Variation in the thermal conductivity of a metal-coated tri-walled carbon nanotube (3WCNT), in the presence of vacancies, was studied using non-equilibrium molecular dynamics simulations. A Two-Temperature model was used to account for electronic contribution to heat transfer. For 3WCNT with 0.5% and 1% random vacancies, there was 76%, and 86% decrease in the thermal conductivity, respectively. In that order, an overall ~66% and ~140% increase in the thermal conductivity was recorded when 3 nm thick coating of metal (nickel) was deposited around the defective models. We have also explored the effects of tube specific and random vacancies on thermal conductivity of the 3WCNT. The changes in thermal conductivity have also been justified by the changes in vibrational density of states of the 3WCNT and the individual tubes. The results obtained can prove to be useful for countering the detrimental effects of vacancies in carbon nanotubes.