Dislocation-related conductivity is studied in Schottky contacts Au(In)/Cd1-xZnxTe (x = 0, 0.1) prepared on the surface of single crystals modified by multiple irradiation with a ruby laser and mechanical polishing. The contacts were examined by measuring the DC current as a function of the applied bias and temperature as well as the photoelectric response. It is shown that both methods of surface modification result in p-to-n conversion of the conductivity type of the surface layer. The charge transfer in contacts is explained by the formation of dislocation networks buried under the surface. A model of two potential barriers is proposed for the interpretation of the photovoltaic response in contacts. Their existence is associated with compressive strains in the modified surface layer caused by dislocations, which leads to an increase in the band gap and the formation of a heterostructure.