A flow injection method for the determination of boron using a conductivity detector has been described. Boric acid injected into the flow system reacts with mannitol (0.3 M) in the mobile phase and an equivalent amount of H(+) is liberated in the stream. The increase in the conductance of the mobile phase due to the liberated H(+) has been equated to the boron concentration in the sample. A linear calibration for light- and heavy-water samples containing 0-20 μg/mL boron was obtained. Boron concentrations in the samples of light and heavy water and lithium pentaborate solution have been measured. The interferences due to various ions such as Na(+), Li(+), Cu(2+), Ni(2+), Co(2+), Fe(3+), Al(3+), SO(4)(2-), NO(3)(-), F(-), and Cl(-) could be eliminated by adopting a two-step sample pretreatment procedure. In the first step, all the anions were converted to Cl(-) by treating the sample solution with a strong anion-exchange resin. In the second step, the solution obtained from the first step was passed through a silver-guard cartridge to remove interfering cations and Cl(-). The relative standard deviation was ±0.25% for the determination of 1 μg of boron in light water, and the limit of detection was 0.01 μg present in an injection volume of 100 μL. The corresponding values for heavy water were ±0.38% and 0.1 μg, respectively.