We formulate and evaluate distribution-free statistical process control (SPC) charts for monitoring shifts in the mean of an autocorrelated process when a training data set is used to estimate the marginal variance of the process and the variance parameter (i.e., the sum of covariances at all lags). We adapt two alternative variance estimators for automated use in DFTC-VE, a distribution-free tabular CUSUM chart, based on the simulation-analysis methods of standardized time series and a simplified combination of autoregressive representation and nonoverlapping batch means. Extensive experimentation revealed that these variance estimators did not seriously degrade DFTC-VE's performance compared with its performance using the exact values of the marginal variance and the variance parameter. Moreover, DFTC-VE's performance compared favorably with that of other competing distribution-free SPC charts.