Loss of wind turbine power production identified through performance assessment is a useful tool for effective condition monitoring of a wind turbine. Power curves describe the nonlinear relationship between power generation and hub height wind speed and play a significant role in analyzing the performance of a turbine.Performance assessment using nonparametric models is gaining popularity. A Gaussian Process is a nonlinear, non-parametric probabilistic approach widely used for fitting models and forecasting applications due to its flexibility and mathematical simplicity. Its applications extended to both classification and regression related problems. Despite promising results, Gaussian Process application in wind turbine condition monitoring is limited.In this paper, a model based on a Gaussian Process developed for assessing the performance of a turbine. Here, a reference power curve using SCADA datasets from a healthy turbine is developed using a Gaussian Process and then was compared with a power curve from an unhealthy turbine. Error due to yaw misalignment is a standard issue with a wind turbine, which causes underperformance. Hence it is used as case study to test and validate the algorithm effectiveness.