We consider pointwise asymptotic confidence intervals for images that are blurred and observed in additive white noise. This amounts to solving a stochastic inverse problem with a convolution operator. Under suitably modified assumptions, we fill some apparent gaps in the proofs published in [N. Bissantz, M. Birke, Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators, J. Multivariate Anal. 100 (2009), 2364-2375]. In particular, this leads to modified bootstrap confidence intervals with much better finite-sample behaviour than the original ones, the validity of which is, in our opinion, questionable. Some simulation results that support our claims and illustrate the behaviour of the confidence intervals are also presented.