Heterogeneous and configurable multicore systems provide hardware specialization to meet disparate application hardware requirements. However, effective multicore system specialization can require a priori knowledge of the applications, application profiling information, and/or dynamic hardware tuning to schedule and execute applications on the most energy efficient cores. Furthermore, even though highly disparate core heterogeneity and/or highly configurable parameters with numerous potential parameter values result in more fine-grained specialization and higher energy savings potential, these large design spaces are challenging to efficiently explore. To address these challenges, we propose a novel configuration-subsetted heterogeneous and configurable multicore system, wherein each core offers a small subset of the design space, and propose a novel scheduling and tuning (SaT) algorithm to efficiently exploit the energy savings potential of this system. Our proposed architecture and algorithm require no a priori application knowledge or profiling, and incur minimal runtime overhead. Results reveal energy savings potential and insights on energy trade-offs in heterogeneous, configurable systems.