Abstract:In an effort to reduce the environmental impact of the energy sector that is mostly based on fossil fuels, researchers are looking for a clean alternative of our existing energy sources. Hydrogen Energy and Fuel Cells, and in particular Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have emerged as a leading candidate for transportation as well as stationary and portable applications. Due to the irreversibility of the electrochemical reactions and ohmic heating in the fuel cell components, the PEMFC produces a significant amount of heat and this heat has to be removed in order to avoid cell or stack overheating. In this paper, a review of the key heat transfer mechanisms and the various cooling strategies that are available for heat removal from PEMFCs are presented. Due to the interrelated nature and difficulty of conducting in-situ thermal measurements on the operating PEMFCs, computational modelling provides a fast and efficient way of designing PEMFC cooling systems and understanding the heat transfer mechanisms. Therefore PEMFC thermal modelling is also highlighted together with present challenges and potential areas for further research and development works.