The prototypical family of incommensurate composite materials are the n-alkane/urea inclusion compounds, in which n-alkane guest molecules are arranged in a periodic manner along one-dimensional tunnels in a urea host structure, with an incommensurate relationship between the periodicities of the host and guest substructures along the tunnel. We develop interpretations of the structural periodicities, superspace group descriptions and symmetry properties of the lowtemperature phases of n-alkane/urea inclusion compounds, based in part on a high-resolution synchrotron single-crystal X-ray diffraction study of n-nonadecane/urea. Specifically, we prove that, on passing from phase I to phase II, the C-centering of the orthohexagonal unit cell is lost for both the host and guest substructures, and that the symmetries of all phases I, II and III are described completely by (3+1)-dimensional superspace groups.