Engineered nanoporous materials have been extensively employed in the environmental field to take advantage of increased surface area and tunable size exclusion. Beyond those benefits, recent studies have uncovered that the confinement of traditional environmental processes within several nanometer pores exerts unique nanoconfinement effects, such as enhanced adsorption capacity, reaction kinetics, and ion selectivity, compared to their analogous processes without spatial confinement. In this review, we provide a systematic discussion covering the current understanding of nanoconfinement effects reported across diverse fields using similar materials and structures as those being explored in environmental technologies. We further abstract the underlying fundamental physical and chemical principles including molecular orientation and rearrangement, reactive center creation, noncovalent binding, and partial desolvation. Finally, we establish connections between promising nanoconfinement observations and traditional environmental processes to identify challenges and opportunities for the development of innovative functional platforms for environmental applications.