2010
DOI: 10.1088/1751-8113/43/48/485402
|View full text |Cite
|
Sign up to set email alerts
|

Confinement interaction in nonlinear generalizations of the Wick–Cutkosky model

Abstract: Препринти Iнституту фiзики конденсованих систем НАН України розповсюджуються серед наукових та iнформацiйних установ. Вони також доступнi по електроннiй комп'ютернiй мережi на WWW-сер-верi iнституту за адресою http://www.icmp.lviv.ua/ Анотацiя. Розглядаються узагальнення моделi Вiка-Куткоського з нелiнiйним полем-посередником. Шляхом розкладу за параметром нелiнiйности та вилученням поля-посередника з допомогою кова-рiянтної функцiї Ґрiна отримано лаґранжiян iз часо-нелокальними багато-точковими членами взаємо… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
28
0

Year Published

2013
2013
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(28 citation statements)
references
References 25 publications
0
28
0
Order By: Relevance
“…For the study of inter-quark interactions (and subsequently for the study of the properties of mesons and baryons) it is convenient to use a (formal) solution of the gluon equations of motion (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) to reformulate the Lagrangian, and thus the action, of QCD, so that the gluon propagator appears directly in the interaction terms. Such reformulation has been shown to be useful for the study of inter-particle forces in scalar theory with a nonlinear mediating field [4,5]. The formal solution of (1-19) involves the use of the symmetric Green function of that equation, and this requires a choice of gauge.…”
Section: Reformulationmentioning
confidence: 99%
See 4 more Smart Citations
“…For the study of inter-quark interactions (and subsequently for the study of the properties of mesons and baryons) it is convenient to use a (formal) solution of the gluon equations of motion (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) to reformulate the Lagrangian, and thus the action, of QCD, so that the gluon propagator appears directly in the interaction terms. Such reformulation has been shown to be useful for the study of inter-particle forces in scalar theory with a nonlinear mediating field [4,5]. The formal solution of (1-19) involves the use of the symmetric Green function of that equation, and this requires a choice of gauge.…”
Section: Reformulationmentioning
confidence: 99%
“…The formal solution of (1-19) involves the use of the symmetric Green function of that equation, and this requires a choice of gauge. We shall use the Lorentz gauge, ∂ µ A µ (a) (x) = 0, whereupon the "glue" equation (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) can be rewritten as an integral equation,…”
Section: Reformulationmentioning
confidence: 99%
See 3 more Smart Citations