Luminescence holds unique potential as a sediment tracer and provenance method. The tracer application of luminescence has key advantages including ease of measurement, relatively low cost, and applicability to geologically ubiquitous quartz and feldspar sand and silt. These advantages can help answer fundamental questions about geomorphology, sediment transport, sediment production, and the tectonic/climatic controls on source‐to‐sink sedimentary systems. There is a notable body of research on luminescence as a sediment tracer. These tracer methods range from identifying source locations based on unique luminescence characteristics, to observing changes in luminescence characteristics with transport, to using residual luminescence to infer rates of transport. Previous applications of luminescence include provenance and quantification of fluvial transport rate, tracing of coastal longshore drift, estimations of mixing rates in soil or sediment, and provenance of wind‐blown deposits. The few studies that compare luminescence methods with nonluminescence tracer methods show good agreement. However, more work is needed to test the application of luminescence tracers in sediments. Future research directions should focus on comparing luminescence‐based with nonluminescence tracer methods. Furthermore, research is needed on the effects of specific geomorphic processes on luminescence characteristics and residual doses. While there is significant potential for future research, luminescence is already a useful sediment tracer and provenance tool applicable to a wide range of geomorphic environments.