2023
DOI: 10.54330/afm.131478
|View full text |Cite
|
Sign up to set email alerts
|

Conformal Assouad dimension as the critical exponent for combinatorial modulus

Abstract: The conformal Assouad dimension is the infimum of all possible values of Assouad dimension after a quasisymmetric change of metric. We show that the conformal Assouad dimension equals a critical exponent associated to the combinatorial modulus for any compact doubling metric space. This generalizes a similar result obtained by Carrasco Piaggio for the Ahlfors regular conformal dimension to a larger family of spaces. We also show that the value of conformal Assouad dimension is unaffected if we replace quasisym… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?