Conformal $\eta$-Ricci-Yamabe solitons on submanifolds of an $(LCS)_n$-manifold admitting a quarter-symmetric metric connection
Sunıl Yadav,
Abdul Haseeb,
Ahmet Yıldız
Abstract:This paper presents some results for conformal $\eta$-Ricci-Yamabe solitons (CERYS) on invariant and anti-invariant submanifolds of a $(LCS)_n$-manifold admitting a quarter-symmetric metric connection (QSMC). In addition, we developed the characterization of CERYS on $M$-projectively flat, $Q$-flat, and concircularly flat anti-invariant submanifolds of a $(LCS)_n$-manifold with respect to the aforementioned connection. Finally, we construct an example that appoints some of our inference.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.