As is well-known, nonunitary RCFTs are distinguished from unitary ones in a number of ways, two of which are that the vacuum 0 doesn't have minimal conformal weight, and that the vacuum column of the modular S matrix isn't positive. However there is another primary field, call it o, which has minimal weight and has positive S column. We find that often there is a precise and useful relationship, which we call the Galois shuffle, between primary o and the vacuum; among other things this can explain why (like the vacuum) its multiplicity in the full RCFT should be 1. As examples we consider the minimal WSU(N) models. We conclude with some comments on fractional level admissible representations of affine algebras. As an immediate consequence of our analysis, we get the classification of an infinite family of nonunitary W 3 minimal models in the bulk.