A new strategy for fast fluorescent detection of cysteine (Cys), based on a response-assisted electrostatic attraction, is demonstrated. By utilizing this strategy, we designed and synthesized three fluorescent probes for the specific detection of Cys under actual physiological conditions. The probe m-CP, a coumarin fluorophore conjugated with a substituted methyl pyridinium group through an unsaturated ketone unit, showed highly selective and sensitive detection for cysteine (Cys) over homocysteine (Hcy) and glutathione (GSH). The kinetic analysis indicated that the sensing process was highly accelerated (a response time less than 1 min) by the response-assisted electrostatic attraction. More importantly, control experiments with isomeric probes first demonstrated that the spatial charge configuration of the probe played an important role in Cys-preferred selectivity and kinetic rate acceleration. Furthermore, the practical utility of the probe m-CP in the fluorescent labeling of Cys residues within proteins was demonstrated. Finally, these probes were employed in living cell imaging with HeLa cells, in which it displayed satisfactory cell permeability and enabled us to distinguish active thiols in the cytoplasm, nucleus, and mitochondria.