The model describing the structure and conformational preferences of the HIV-Haiti V3 loop in the geometric spaces of Cartesian coordinates and dihedral angles was generated in terms of NMR spectroscopy data published in literature. To this end, the following successive steps were put into effect: (i) the NMR-based 3D structure for the HIV-Haiti V3 loop in water was built by computer modeling methods; (ii) the conformations of its irregular segments were analyzed and the secondary structure elements identified; and (iii) to reveal a common structural motifs in the HIV-Haiti V3 loop regardless of its environment variability, the simulated structure was collated with the one deciphered previously for the HIV-Haiti V3 loop in a water/trifluoroethanol (TFE) mixed solvent. As a result, the HIV-Haiti V3 loop was found to offer the highly variable fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural rearrangements, bringing in substantial altering the secondary and tertiary structures of this functionally important site of the virus envelope. In spite of this fact, over half of amino acid residues that reside, for the most part, in the functionally important regions of the gp120 protein and may present promising targets for AIDS drug researches, were shown to preserve their conformational states in the structures under review. In particular, the register of these amino acids holds Asn-25 that is critical for the virus binding with primary cell receptor CD4 as well as Arg-3 that is critical for utilization of CCR5 co-receptor and heparan sulfate proteoglycans. The conservative structural motif embracing one of the potential sites of the gp120 N-linked glycosylation was detected, which seems to be a promising target for the HIV-1 drug design. The implications are discussed in conjunction with the literature data on the biological activity of the individual amino acids for the HIV-1 gp120 V3 loop.